/ /
.
:
2001
.
........................................................................
......................................3
1: -
.....................................7
1.
.........................................7
2.-
..........................................................10
2:
..................................................................
.....18
1.
........................................................................
......................18
2.
........................................................................
.....................20
3. ..............54
4.
......................................................65
........................................................................
.............................68
........................................................................
..............................70
........................................................................
...........................74
.
,
.
, ,
.
, ,
.
,
, -, ,
, -,
,
.
,
,
, , , ,
.
, , , ,
.
,
.
5-6 ,
.
""- ""-.
, ,
, , , , .
,
. , 5-6
.
,
.
.
, ,
.
,
.
,
, ,
.
, ,
,
.
,
.
,
.
,
,
.
,
"" ,
.
, ,
.
.
.
" ".
,
,
,
.
.
:
-
" ".
" ".
.
-, ,
" ", .
1. -
.
1. .
1967/1968 7-10
. -
, ,
.
,
, .
,
.
(
)
,
.
,
.
.
: ,
,
.
, ,
, , ,
, ,
.
,
. ,
,
.
..
.
,
.
,
.
,
.
,
, ,
. ,
, (
) .
. ,
.
, ,
, - .
.
, ,
, .
. ,
,
(, .),
,
.
:
( )
;
;
;
:
,
, ,
,
.
2. -
.
,
:
-, .
-
.
,
, .
. .
,
-
.
, .
-
, ,
.
,
, ..-
.
, :
, ,
" ",
.
, .
,
.
.
,
.. ... ,
- ,
, .
,
. ,
.
,
, ,
""
- .
, .
,
.
,
- ,
, -
.
,
, , .
.
, .
,
. ,
.
,
,
,
.
.
,
,
, .
.
.
.
,
-,
. ,
: , ,
.
.
10-11
, .
:
;
,
; ,
;
.
.
, , ..
.
.
-
, ,
,
.
,
.
,
.
,
.
, :
-
-
-
- -
.
, ..
-
(
);
( )
- :
-
- [36].
.
.
,
, - ,
.
.
, ,
, .
.
,
, , .
,
.
,
.
,
.
.
.
,
,
,
, .
,
,
,
.
.
.
,
, ,
.
,
, , ,
. , , ,
.
. .
,
.
. -,
, -,
,
,
. - ,
,
- .
.
, , .
,
,
.
.
, ,
- ,
, .
- :
, ,
, ;
; ,
;
;
.
2. "
".
1. " ".
.
,
.
[1] .., ..
: a+bi,
.
,
.
:
;
;
.
.. [16]
, .
11
.. . [10]
" ".
,
.
.
.
[15] .. ..
.
n- .
10
, .
[40] ,
.
, .
.
.. [17]
. .
.
.
,
.
, ,
,
, ..
.
" " " "
( ,
, ..)
,
,
" ".
2. .
-
,
, ,
,
.
. .
.
.
.
, .
. ,
.
.
.
.
.
.
.
.
1.
: . .
1: ( -1
i: i=( -1.
, i2= -1.
.
:
( -36=( -36(-1)=( -36(( -1= 6i
:
I1=1, i2= -1, i3= i2 (i=(-1)(i=-i, i= i3( i= -i(i=1, ......
.
.. i ,
: i, -1, -i, 1, i, -1, -i, 1....... ..
2: z=a+bi, a b- ,
i- , .
a- z
bi- z, z=a+bi-
z.
3: z=a+bi, z=c+di
,
.
4: z1=a+bi, z2=c+di
z= (a+c)+ (b+d)i.
5: a+bi, z2=c+di
o z= (a-c)+ (b-d)i .
6: z1=a+bi, z2=c+di
z=(ac-bd)+(ad+bc)i.
: .
, ,
i2= -1.
, , ,
.
.
:
I28+i33+i135 , (b) (i13+i14+i15)i32, (c)i43+i48+i44+i45,(d) ( -64+(
-16+(9
():
, i 4,
i:
4, 1
4 1,
i
4 2,
-1
4 1,
i
28=4(7, i28=1
33=4(8+1, i33=i
135=4(33+3, i135= -i
, : i28+ i33+ i135=1+i i=1
x, y z1 , z2
:
z1=3y+5xi z2 =15-7i
z1=7x+5i z2 =1-10iy
():
, 3y=15, 5x= -7.
x=(-7)/5, y=5.
x y ?
(2x+3y)+(x-y)i=7+6i
x+(3x-y)i=2-i
(3i-1)x+(2-3i)y=2-3i
:
(3+5i)+(7-2i)
:
(3+5i)+(7-2i)=(3+7)+(5i-2i)=10+3i;
(-5+2i)-(5+2i);
(5-4i)+(6+2i);
:
(2+3i)2
:
,
.
(2+3i)2=4+2*2*3i+9i2=4+12i-9=-5+12i
(3-5i)2;
(17+6i)3;
(11-7i)(11+7i);
2.
: .
1: ,
.
:
25+3i 25-3i
-6+i -i-6
8,2-i -i+8,2
.
(2+3i)/(5-7i)
, :
,
((2+3i)/(5-7i))((5+7i)/(5+7i))=(10+14i+15i+21i2)/(25-49i2)=
=(-11+29i)/74=-11/74+29/74
5/(3+2i);
(1-i)/(1+i);
(6-7i)/i;
:
I123+(1-i)6-(1+i)8;
[(1+i)/(1-i)]12+[(1-i)/(1+i)]12;
:
[(1+i)/(1-i)]12+[(1-i)/(1+i)]12 =[((1+i)(1+i))/((1-i)(1+i))]12+
+[((1-i)(1-i))/(1+i)(1-i))]12=[(1+i)2/(1-i2)]12+=[(1-i)2/(1-i2)]12=
=[(1+2i+ i2)12+(1-2i+ i2)12]/212=[212*i12+2*(-i)12]/
212=i12+(-i)12=1+1=2
, :
5-17,7i; 5-7i; 33i+12; 6i; -8-63i; 11i
4. z : z=113,75+21i
5. , z=39+i
z , z=11-i.
,
3, 17.
3.
: .
z=a+bi Z
(a, b).
(.1).
. , .. bi (b(0),
. , :
, .. bi (b(0), .
.
(, b)
(0, 0) Z(a, b).
z=a+bi
(0, 0) Z(a, b). ,
:
,
(.2).
z=5+3i, z=5-3i;
z=i, z=-i ;
.
;
;
z1=5, z2=-3i, z3=3+2i, z4=5-2i, z5=-3+2i, z6=-4-5i
z1=7+i, z2.
, 1 2 ,(
1 z1, 2 z2)
M1M2.
:
z=7+i, z=7-i
,
, ,
OM1 M2 7, 2.
:
S=(1/2)( M1M2(h=(1/2)(2(7=7
, ,
z1=2-2i, z2=1+3i , (2,
-2), (1, 3).
: z1=3, z2=-3, z3=3i, z4=-3i.
, ,
.
4.
: .
, .
z=a+bi r
(0, 0) Z(a, b)( .1) Z
a b, r (,
. a=rcos(,
b=rsin( z z=r(cos(+isin(),
. r
z (z(. ( z
Arg z.
1: z=a+bi
z, (z (=(a2 + b2.
r=(z (=(a2 + b2.
2: z=a+bi (,
z ,
.
. cos(, sin( - 2(, (=(+2(k, k-
.
( k=0
.
, cos (=a/r, sin (=b/r,
z=a+bi=rcos (+ irsin (=r(cos (+isin ()-
.
.
:
z=1+i; z=-2+2i(3; z= -3i; z=5; z=6i
: z=1+i
a=1, b=1, r= (z (=(12+12=(2
cos (=1/(2=(2/2
sin (=1/(2=(2/2
(=(/4
z=1+i=(2(cos(/4+isin(/4).
z=-2+2i(3
:
=-2, b=2(3
r=((-2)2+(2(3)2=(16=4
cos (= -1/2
sin (=2(3/4=(3/2
(=2(/3
z=-2+2(3=4(cos 2(/3+isin 2(/3)
(2-6x+13=0
:
D=b2-4ac=(-6)2-4(1(13=36-52=-16
(D=(-16=(16(-1)=4i
(1,2=(-b((D)/2a
(1=(6-4i)/2=2(3-2i)/2=3-2i, (2=(6+4i)/2=2(3+2i)/2=3+2i
, D<0 ,
.
(2+3x+4=0;
x1 x2 4(2-20x+26=0;
5.
: . ,
.
.
. III
108(10.
,
.
.
,
, ,
. ,
.
,
. ,
. ,
, 1.
,
:
, , .
.
. III
, ,
VII ,
.
. VIII
,
,
: , 2= -9.
XVI
.
(3+px+q=0)
:
3((-q/2+((q2/4+p3/27))+ 3((-q/2-((q2/4-p3/27))
,
(3+3-4=0),
(3-7+6=0),
. ,
.
, ,
.
() XVIII XIX ,
(5+ax4+bx3+cx2+dx+e=0) ,
a, b, c, d, e
(, , ,
, , ).
1830 () , ,
, , .
n- (
) n , .
XVII (
), XVIII XIX
.
1545
. ,
+y=10
xy=40
,
(=5((-15, y=5((-15),
,
(-((-=-. ,
. ,
- ,
- . 1572
. ,
,
. 1637
. , 1777
XVIII .
imaginaire ()
(-1 ( ).
. .
1831 .
( complexus) , ,
, , ..,
.
XVII
, .
.
XVII XVIII n-
, ,
. (1707
):
(cos??isin?)n= cos(n(?)?isin(n(?)
.
. 1748 : ei((= cosx+isinx,
.
. e
. , , ei((=-1.
, ,
.
XVIII . ,
.
. ,
,
. .
.
XVIII
, , ,
..
. . ,
, , - ,
.
,
,
- . .
XVIII , XIX
. . , .
.
(z=a+bi) (a,b) .
,
(a,b), , .
.
a b, r (,
. a=rcos(, b=rsin(
z z=r(cos(+isin(),
. r
z (z(. ( z
Arg z.
, z=0, Arg z , z(0
2(.
z
z=r(ei(( ( ).
,
. ,
, ,
. :
;
.
,
,
. .
, ,
. , ,
,
. , ,
.
(,
).
,
.
. ,
.
: n
n=p1((p2(..(p=q1( q2((.(qt,
, .
, k=t, ,
, .
,
. ,
.
, ,
.
, , 2Z
,
. , 10, 50 2 ,
: 100=10(10=50(2. ,
100 2Z
. ,
- .
6.
: .
.
1: ,
, .. z z = a+bi, a b
.
2: z = a+bi
N (z) = a2+b2.
(.. ).
.. ,
, 1
. .. ,
,
.
.
1) :
147,3+(3/2)i
2,5+7i
3i
5i+2
147.3+(3/2)i
2) 1: , .. N
(??) = N (?)(N(?)
2:
1+ i 2,
2+ i 5. 10?
3) 2: C
,
.
3:
9 ?
: ,
.
(9=3, n( 3. 1,
2, 3.
9. , -
, ,
.
9-1=8- , 9-2=5- .
- , 9
.
4) ,
: 26; 16; 10; 13; 18; 7; 17; 61;
24; 29; 50
:
.
7
: .
.
1: , ??0
? ???
? , : ?=?(?
: , N(?)=N(?)( N(?),
??0, N(?) ?0, ???
N(?)?N(?), N(?), N(?) - .
,
, : +1 1.
.
: +1, -1, +i, -i .
: ?=?(1 ?=(-i?)(I
?=(-?)((-1) ?=(i?)((-i)
2: ?
, ?=??
.
1: - ?
, ? .
: ?=a+bi N(?)=p
. ?=??, N(?)=p=N(?)(N(?).
:
N(?)=p, N(?)=1, ?
N(?)=1, N(?)=p, ?
, 2, ? .
.
.
, ? ? :
?=5-7i; ?=5+7i
?=1+i; ?=3i+1
?=2+i; ?=3i+1
?=3+7i; ?=19+25i
?=4-i; ?=19+25i
?=-5+i; ?=11i-3
, ??? 1,
, ???, N(?)?N(?).
:
3i+2, 4i+1, -2i+3, -4i-1, 5+5i;
-5i+6, 7i+1, 1+5i, -4+i, 3+2i;
-7-i, 13+i, 4-i, i-1, 2+3i;
8
: .
1: ,
,
.
: ?, -?, i?, -i? , ?
.
2: ?1, , ?n
?, ???1, ,???n.
3: ?1, ,
?n ?,
???1, , ???n
? ?1, , ?n ???.
:
? ?, 0,
.
.. ?=??+??, ?= (?, ?); ?, ? .
4: ?, ? ,
1.
, (?, ?)=1 ,
?, ? , ??+??=1.
: ? ?1 ? ?2, ?
?1(?2.
: (?, ?1) 1,
? ?, 1=??+??.
.. (?, ?2) 1, ? ?, 1= ??+??
:
1=(??+??1)(??+??2)=?(???+???1+???2)+(??)(?1?2),
?=???+???1+???2 ?=??, ? ?
1=??+?(?1?2), , ? ?1?2 .
.
: ? ?1, ?2, , ?k, ?
.
:
.
k=2,
, < k.
? ?1, ?2, , ?k, ?1, ?2, , ?k-1.
? ?1(?2((?k-1 ?
?k, ?
?1(?2((?k, .
c: ?, ? (??0)
, ? ?,
N(?)
9.
: .
.
: ?,
, ?=?1((2((?k
(?i , ),
.
:
: ?
) N(?)=2, ?=1+i, 1+i
) N(?)=n,
. ? ,
?=??, N(?)
, ? ? : ?=?1*?2**?k
?=?1*?2**?l, ?=?1**?k*?1**?l ?.
: ?.
) N(?)=2, ?=1+i, ?=x+iy, N(?)=x2+y2,
2+2=2 4 :
=1, =1; =-1, =-1; =1, =-1; =-1, =-1;
1+i, -1+i, 1-i, -1-i,
.
) ,
?, N(?)
? ?1, ?2, , ?s ?1, ?2, , ?t
.
, , ?s
?: ?1, ?2, , ?t. , .. ?s
?i, i=1, 2, , t, ?s ?i,
?1*?2**?t ( ), .. ?..
, .. ?s??.
, ?s - ?1, ?2, , ?t.
, ?s ?t.
: ?=?1**?s-1*?s=?1**?t-1*?t,
?=???s=?1**?s-1=?1**?t-1.
N(?)
, .. s-1=t-1, ?1**?s-1 ?1*?t-1
. ?s=?t,
?1, , ?s ?1, , ?t.
.
: ?
? ?, ? ? ? ?.
: ????, N(?)?N(??), N(??)>N(?)>2.
, ?? .
???? , ? ??,
. , ? ? ?,
.. ??? ???, .
10.
: .
1:
.
: N(?)=?(?, ??0 ??N(?).
? . ??N(?).
N(?) ,
p1**ps. ??p1**ps,
: ??i
i (i=1, 2, , s). , ?
.
2: N(?) ?
, .
: 1 , ,
??, .. =??.
2=N(p)=N(??)=N(?)*N(?)
N(?)*N(?)=p2
N(?)?1, .. ? .
:
N(?)=N(?)=p
N(?)=p2, N(?)=1, .
: , 2,
, 4k+1.
: ?
.
1. N(?)
) N(?) , ?
) N(?)=p2, 4k+3, ?
) ? .
:
N(?)
N(?) 1((s
i (i=1, 2, , s) 4k+3 , pj
4k+1 : pj=x2+y2
? x+yi
? y+xi
, ,
?.
?=7+4i.
N(?)=72+42=49+16=65=5(13
?=??, N(?)=5, N(?)=13
5 13 4k+1, : 5=22+12
13=22+32
: ? 2+i 1+2i; ?
3+2i 3i+2.
) ?'=1+2i, ?'=3+2i
?'?'=(1+2i)(3+2i)=-1+8i 7+4i
) ?'=1+2i, ?'=2+3i
?'?'=(1+2i)(2+3i)=-4+7i=i(7+4i)??'?'(-i)=7+4i
?=?'(-i)=2-i
: 7+4i=(2-i)(2+3i)
?=-12+6i.
N(?)=144+36=180=22(32(5
5 4k+1? : 5=22+12.
3 4k+3? ?=????, N(?)=N(?)=2,
?=3, N(?)=5
: ? ? 1-i; ? 2+i
1+2i.
) ?'=?'=1-i, ?'=2+i
?'?'?'?'=-24-12i 12+6i
) ?'=1+i, ?'=1-i, ?'=1+2i
?'?'?'?'=6+12i=(-i)(-12+6i) ? ?'?'?'?'i=-12+6i
?= ?'i=(1+2i)i=-2+i
-12+6i=(1+i)(1-i)3(-2+i)
3.
.
,
.
,
,
. ,
,
,
.
, .
.
.(.).
- ,
,
, .
, :
7i 7i?
?
?
.
-
.
,
, ,
.
.
,
, ,
, ,
.
: ,
i, , ,
.
,
a+bi, a b
. ,
+ i, .
,
,
.
, (, ,
) ,
.
a+0i, ,
. ,
z1= a+0i z2=+0i,
(a+0i)+(+0i)=(a+c)+0i (a+0i)( +0i)=+0i, ,
z1+ z2 +,
z1* z2 .
a+0i
-, a+0i
.
.
0+1i i , ,
0+bi b
i,
= a+0i b=b+0i
i=0+1i.
i2=(0+1i)( 0+1i)= -1+0i = -1, ,
,
, i2 1.
,
z=a+bi (a, b) ,
,
..
-.
,
.
.
Z ,
Z. z=a+bi , (z(=(a2+b2 .
, = a+0i
((=(a2+02 ,.
.
argZ z
,
, .
, 0(argZ(2(.
,
-(
, ,
z=a+bi.
z-
argZ+2(k, k .
,
(
, 2().
z=r(cos(+isin(), r=(z(, (- .
z(0
. 0 , ,
.
5 .
,
- .
, ,
,
.
. 6,7,8,9,10.
.
.
.
,
.
- ,
.
,
.
-
.
.
, - ..
, ,
, .
, , ,
,
.
, ,
.
,
.
.
.
,
, ( ,
, .).
,
.
.
..:
,
. ,
, ,
, .
, , ,
.
. ,
.
( )
()
.
.
, 1,
.
,
-
.
,
.
,
: +1 1.
: +1, -1, +i, -i.
.
.
, (
, , , 1(
).
N(()(( , N(()=1. (=x+yi, x2+y2=1.
:
=1, =0; =0, =1; =0, =-1; =-1, =0.
+1,
-1, i, -i.
, ,
,
, .
.
. ,
:
(-
, , (.
.
. ,
.
.
,
.
.
.
, ,
,
, .
, , 2-,
, ,
, .
, 2
2=(1+i)(1-i) 1+i 1-i
.
, 5 ,
5=(2+i)(2-i).
, 4n+1
, .. ,
,
,
- .
,
.
,
4n+1 .
, 4n+1
, ,
, .
(
:
,
, , 4n+3
.
.
.
, .
.
, ,
.
. ,
. 10
:
.
.
.
.
, ,
, ,
.
(=+(-5, -
.
, , (=+(-5
.
. ,
( =0).
,
:
( ( , ((( , ..
(= +(-5.
,
:
N(()=N(+(-5)=( +(-5)( -(-5)=x2+5y2 .
,
.
,
.
+1, -1.
,
N(()=x2+5y2=1, = (1, =0.
,
.
.
:
, 2=2+0((-5, 3=3+0(-5, 1+((-5, 1-((-5
.
, N(2)=4, N(3)=9, N(1+((-5)=N(1-((-5)=6.
,
(= +(-5,
N(()=N(+(-5)=x2+5y2=2 N(()=N(+(-5)=x2+5y2=3.
, .. , x2+5y2=2 x2+5y2=3
.
- .
6=2(3=(1+((-5) (1-((-5) 6
.
,
, , ,
. ,
;
.
4. .
- 4 . 11-
3- .
, ,
,
.
, , :
;
;
?
-2i
2i ;
;
2i ;
.
:
11 ,
.
,
.
- .
,
,
.
:
,
.
.
.
3- 7 .
-
,
. 6
.
14 .
. ,
, , .
:
,
, ,
.
.
,
.
.
" " (
) :
,
. ,
- " "
,
, ..
.
, ,
.
[14](, ,
.
-
,
" ",
, ,
,
.
,
, ,
.
.
.., .., .. .
; 10 . . .: , 1980 .
.. . .:
, 1975 .
.. .
1 .: 1974 ., 2 .: 1975 .
.., .. : . .:
, 1962 .
.., .. . .:
, 1971 .
.., .., .. .
. . .: , 1983 .
.. : .
, 1962 .
.., .. , ,
. // . .: 1987 .
.. .
. .: , 1973 .
.., - .., ..
11 : .
.. .: , 1993 .
.. . .:, 1963 .
..
. .: , 1985 .
.., ..
. // . .: 1996 .
.. . .: ,
.., .. .- : - .-, 1994 .
./ . .. , 1971 .
.. . .: , 1969 .
.. .
. .: , 1979 .
.. -
. .: 1991 .
.., .. . .:
, 1963 .
.., .. :
. .: ,
, 1939 .
..
. . .: 1988 .
.., ..: . .-
.: , 1991 .
.. . .:, 1955 .
.., ..
. - .: , 1965 .
.. ( ).
.: , 1986 .
..
.
, 1991 .
..
. .: , 1980 .
.. .
.: , 1963 .
. .. . .:
, 1973 .
.. .
. .: , 1973
.
.., .. .
. .: , 1991 .
..
. .
.. . .
: , 1986 .
..
. . .: 1974 .
.., .. :
. .: , 1989 .
.. -
: .
.. : .
.: , 1988 .
.., .. :
. .: , 1994 .
.. . .: , 1963 .
r=(z (
(=argZ